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Although stiction is a cumbersome problem for microsystems, it stimulates investigations of surface

adhesion. In fact, the shape of an adhered cantilever carries information of the adhesion energy that

locks one end to the substrate. We demonstrate here that the system is also sensitive to the

dispersion forces that are operative very close to the point of contact, but their contribution to the

shape is maximum at about one third of the unadhered length. When the force exceeds a critical

value, the cantilever does not lose stability but settles at a smaller unadhered length, whose relation

to adhesion energy is only slightly affected by the force. Our calculations suggest the use of adhered

cantilevers to measure the dispersion forces at short separations, where other methods suffer from

jump-to-contact instability. Simultaneous measurement of the force and adhesion energy allows the

separation of the dispersion contribution to the surface adhesion. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4991968]

Dispersion forces, a common name for the fluctuation-

induced van der Waals (vdW) and Casimir forces,1,2 become

measurable with relative ease at separations less than 100 nm

(Refs. 3–6) since they have significant magnitudes. However,

even at these separations, they are weak compared to back-

ground forces such as elastic, electrostatic, or capillary forces.

Only at very small separations between bodies �1 nm the

dispersion forces dominate. The latter means that these forces

play a crucial role only near or at the point of contact of two

macroscopic bodies. Although it is natural to expect that

these forces are not important far away from the point of con-

tact as, for example, was formulated in the crack theory by

Barenblatt,7 there are physical situations where the finite

range of the dispersion interaction plays a principal role.

One example that was considered recently8 demonstrated

this effect for surface nanobubbles. These nanobubbles are

gaseous domains trapped at the solid-liquid interface.9,10

They have the shape of a spherical cap with heights of �10

nm. The liquid and solid, separated by a gaseous gap, attract

each other due to the dispersion interaction. The energy asso-

ciated with this interaction at distances d � 10 nm is esti-

mated as �10�5 J/m2 that is much smaller than the surface

tension of liquids c � 10�2 J/m2. However, in the corners,

where the gas-solid and gas-liquid interfaces meet, the energy

is singular. The singularity is resolved due to balance of the

attractive vdW and repulsive chemical interaction at distances

�3 Å.11 For a drop in gas or in another liquid, the effect of

the dispersion interaction is important only at the very cor-

ners.12 However, for nanobubbles, both the gas compressibil-

ity and a finite range of interaction influence significantly the

global characteristics of the bubbles such as the aspect ratio

or the contact angle.8

Furthermore, the dispersion interaction close to the

point of contact can influence the global characteristics of

contacting bodies, which is a crucial issue in the fabrication

and operation of micro/nanodevices and architectures. The

basic system under consideration is an adhered cantilever

shown in Fig. 1. The adhered cantilever problem originates

from microfabrication, where unwanted stiction can appear

during the final fabrication step (drying) or as an accidental

stiction during operation.13,14 A relationship between the

adhesion energy per unit area C and the length of the unad-

hered part of the cantilever (crack) s was established.15–17

This relation was used to measure the adhesion energy.18 It

was found19 that in dry conditions the main contribution to C
comes from the dispersion interaction at the contact distance

d0. However, from the analysis of a restricted range of

parameters it was concluded that the same dispersion interac-

tion outside of the contact range gives only a small correc-

tion to the shape of the cantilever.18

The Casimir force is typically measured between two

bodies when one of them is suspended on an elastic spring.20

At small distances, the system becomes unstable and jumps

to contact.21–23 Due to this instability, the measurement of

FIG. 1. Adhered cantilever. One end is firmly fixed at a height hþ d0 above

the substrate. The other end sticks to the substrate. The coordinate system is

chosen as shown in the figure. Both the cantilever and the substrate are rough.

A combined roughness defines the minimal distance at the contact d0. The

function z ¼ uðxÞ describes the shape of the cantilever in the coordinates x–z.a)Author to whom correspondence should be addressed: v.b.svetovoy@rug.nl
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the force in air or vacuum at distances of the order or below

10 nm becomes cumbersome.6,24,25 The adhered cantilever is

an interesting system that can, in principle, overcome the

problem of instability at small distances. This cantilever is

never in an unstable state: if the force increases, the crack

length becomes smaller but the system does not lose stability.

Therefore, if the dispersion forces can give a measurable con-

tribution to the shape of the cantilever, we can extract infor-

mation on the forces at distances, which are not available for

the elastic suspension method, namely, below 13 nm.24

In this paper, we analyse the influence of the vdW/

Casimir force on the shape of the adhered cantilever and dem-

onstrate that the effect of the force is measurable. Moreover,

the contribution to the shape of the cantilever is maximal far

from the point of contact where it is convenient to measure

this contribution.

The system under consideration, the choice of the coor-

dinate system, and the corresponding parameters are shown

in Fig. 1 (note that the x-direction is positive to the left). The

beam of length L, width w, and thickness t is adhered to the

substrate at the minimal distance d0. The latter is defined by

the combined roughness of the bodies in contact and is deter-

mined not by the root-mean-square roughness but by the

highest asperities. A part of the beam of length L–s sticks to

the substrate with the adhesion energy per unit area C. The

left end of the beam is firmly fixed at a height hþ d0 above

the substrate. A homogeneous situation is assumed along the

beam width (y-direction). The main objective is to find the

shape of the beam u(x) including the dispersion forces acting

between the beam and the substrate outside the contact area.

The total energy of the system can be presented as

Etot ¼ UðsÞ � CwðL� sÞ, where U(s) is the energy of the

deformed part of the beam and the second term is the surface

energy. Minimization of the total energy on s gives the relation

between U(s) and the adhesion energy:17 C ¼ �w�1dU=ds.

On the other hand, U can be presented as a function of u(x)

U½u� ¼ w

ðs

0

dx
D

2

d2u

dx2

� �2

�
ðu

0

P x; vð Þdv

" #
; (1)

where x is the coordinate along the beam, D ¼ Et3=12 is the

flexural rigidity, and E is the Young’s modulus of the beam

material. The first term here is the elastic energy, while the

second one is the work done by the external force per unit

area P(x, u).

Minimization of the functional U½u� gives an equation

for the beam shape

D
d4u

dx4
¼ P x; uð Þ; (2)

which has to be solved with boundary conditions uð0Þ ¼ h;
u0ð0Þ ¼ 0; uðsÞ ¼ u0ðsÞ ¼ 0, where the prime means a deriv-

ative with respect to the argument. We consider the case

when P(x, u) is the vdW/Casimir pressure. This pressure

behaves with the separation gap d as d�a, where the expo-

nent 3 < a < 4 is a weak function of d and the local gap is

d ¼ h� uðxÞ. In a restricted range of separation distances, a
can be considered as a constant. Such a pressure can be pre-

sented as

Pðx; uÞ ¼ PCð1þ R� RfÞ�a; R ¼ h=d0; f ¼ u=h: (3)

Here, 1� f is the normalized gap, PC is the pressure at d0,

and the parameter R� 1 is always large. At a¼ 3 or 4, we

have pure vdW or pure Casimir pressures, respectively, but

at separation distances of interest, the interaction is in the

transition region between the retarded and nonretarded cases

and a is in between 3 and 4. Although the beam is curved,

we use the force between parallel plates that is well justified

since the curvature radius of the cantilever is much larger

than any other length scale.

Introducing the normalized coordinate n and the force

parameter K the problem becomes completely dimensionless

d4f

dn4
¼ K4 1þ R� Rfð Þ�a

;

n ¼ x=s; K ¼ PC=Psð Þ1=4; Ps ¼ Et3h=12s4:

(4)

Here, Ps defines a pressure scale related to the elastic proper-

ties of the beam and K4 is the relative measure of the disper-

sion pressure. Equation (4) is a nonlinear boundary problem

that has to be solved with the conditions: fð0Þ ¼ 1; f0ð0Þ
¼ 0; fð1Þ ¼ 0, and f0ð1Þ ¼ 0. The numerical solution of the

problem is straightforward and can be found by a simple

shooting method choosing f00 and f000 at n¼ 0 to satisfy the

boundary conditions at n¼ 1.

If the dispersion pressure is zero, K¼ 0, an analytical

solution exists, that is,

f0 ¼ 1� 3n2 þ 2n3: (5)

It describes the unperturbed shape of the beam shown in Fig.

1. For a few nonzero values of K, the numerical solutions are

presented in Fig. 2. It is interesting to note that the maximal

deviation from the unperturbed shape f0 occurs far from the

point of contact at n � 1=3. On the other hand, the dispersion

pressure decreases roughly one order of magnitude near the

point of contact at the lateral distance n0 � 1=
ffiffiffiffiffiffi
3R
p

� 1. Such

a nonlocal response of the beam on the well localized disper-

sion pressure is explained by the boundary conditions at n¼ 0

that do not allow fast changes of f near the point of contact.

FIG. 2. Contribution of the dispersion pressure to the shape of the cantilever

for three different values of K. There is a critical parameter Kc such that for

K > Kc the solution disappears.
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The magnitude of the effect is unexpectedly large. For

example, for K¼ 8, the normalized deviation from the unper-

turbed shape of the cantilever is 0.011. For the height

h ¼ 2 lm, as in Ref. 18, we find that the deviation in absolute

units is 22 nm. It can be compared with the 3 nm found in Ref.

18, which corresponds to a significantly smaller value of K.

When K becomes larger than some critical value, the

solution disappears. It happens at K¼Kc where the critical

value Kc at R¼ 100 and a ¼ 3:5 is Kc � 8:39. The deviation

f� f0 corresponding to this critical case is the largest. The

solution disappears due to the following reason: At K¼ 0,

one has f00ð0Þ ¼ �6, but when K increases, f00ð0Þ also

increases and becomes zero at K¼Kc. The second derivative

has to stay nonpositive at the point of contact; otherwise, the

beam has to go below the substrate. Physically it means that

a strong enough force is able to heal the crack reducing the

length s of the unadhered part.

Figure 3(a) shows how the critical parameter Kc depends

on the ratio R ¼ h=d0. When R increases, the force operates

in a relatively short range n � R�1=2 and one has to apply a

larger relative force to heal the crack. The maximum of the

deviation f� f0 in the critical case is shown in Fig. 3(b).

It decreases roughly from 3� 10�2 to 3� 10�3 while R
increases from 50 to 5000.

To understand the results qualitatively, let us approxi-

mate the pressure by a stepwise function, which is nonzero

in a short lateral distance domain 0 < n < n0. This problem

can be exactly solved analytically and the detailed solution is

presented in the supplementary material. We provide here a

simplified version of the model that is able to explain quali-

tatively the main features of the numerical solution. In this

model the dispersion pressure is changed by the function

Pðx; uÞ ¼ PChðn0 � nÞ, where hðnÞ is the Heaviside step

function. We take here n0 ¼ 1=
ffiffiffiffiffiffi
3R
p

that corresponds to the

lateral distance where the pressure is reduced for about one

order of magnitude: f0ðn0Þ ¼ 1� 1=R. An approximate ana-

lytical solution of the problem (4) is

f� f0 ¼
K4

24

n2 n2 � 4n0nþ 6n2
0

� �
; 0 < n < n0

n3
0 4n3 � 8n2 þ 4n� n0

� �
; n0 < n < 1:

8<
:

(6)

The solution is approximate in the sense that all the coeffi-

cients in (6) are given in the leading order in n0. Because of

this approximation the second and third derivatives at n ¼ n0

are discontinuous but it does not play a role for what follows.

The maximum of the function f� f0 is reached at n ¼ 1=3,

in agreement with the numerical solutions. The second deriv-

ative at n¼ 0 is

f00ð0Þ ¼ �6þ K4n2
0=2: (7)

The critical parameter is the value of K for which this deriva-

tive is equal to zero; it gives Kc ¼ ð12=n2
0Þ

1=4
. Taking n0 ¼

1=
ffiffiffiffiffiffi
3R
p

we find Kc ¼ 7:75 for R¼ 100 that is in a reasonable

agreement with the value 8.39 found numerically. In the

advanced variant of the model we found n0 �
ffiffiffiffiffiffiffiffiffiffiffi
2=3R

p
and

Kc ¼ 8:42 (see the supplementary material). Thus, we expect

that Kc scales asymptotically as R1=4. This expectation fits

nicely the numerical results in Fig. 3(a).

The maximal value of the difference f� f0 is realized at

n ¼ 1=3. In the stepwise approximation this value is

ðf� f0Þmax ¼ 2K4n3
0=81. Using this expression we find for

K¼Kc that the largest contribution of the dispersion pressure

to the beam shape scales as R�1=2. This scaling also works

well as one can see in Fig. 3(b). In dimensional terms, the

largest contribution of the dispersion pressure to the beam

shape u� u0 behaves as ðd0hÞ1=2
, where u0 is the shape of

the beam without the dispersion force.

Consider how the energy of the deformed beam (1)

depends on the dispersion pressure. This behavior is impor-

tant to relate the adhesion energy C to the crack length s. In

terms of the normalized variables, the energy can be pre-

sented as (see details in the supplementary material)

U ¼ hwPC
Et3h

12PC

� �1=4

Wel þWFð Þ; (8)

where Wel and WF are dimensionless functionals of f. The first

one, Wel, is associated with the elastic energy of the beam.

Using integration by parts it can be presented in the form

Wel ¼
f000 0ð Þ
2K3

þ K

2

ð1

0

dn
f

1þ R� Rfð Þa : (9)

The second one, WF, is associated with the work done by the

external force

WF ¼ �K

ð1

0

dn
ðf

0

dg
1þ R� Rgð Þa : (10)

Using the stepwise force model, it is easy to estimate different

contributions to the dimensionless energy W ¼ Wel þWF.

The third derivative that enters Eq. (9) is proportional to the

shear force at n¼ 0 and can be found from Eq. (6) as

f000ð0Þ ¼ 12� K4n0. The first term originates from the unper-

turbed beam but the second one is due to the dispersion inter-

action. When K increases, the shear force changes sign and

becomes large in the absolute value. On the other hand, the

integral term in (9) is estimated as Kn0=2. It is interesting to

note that this last term cancels exactly the contribution of the

dispersion pressure at n¼ 0. All that is left is the elastic

FIG. 3. (a) Critical parameter Kc as a function of R for three different values

of a. The circles are the points of actual calculation and the dashed curves

demonstrate the expected R1=4 scaling. (b) Maximal deviation due to the dis-

persion pressure in the critical case. The dashed curves show that the R�1=2

scaling agrees well with the numerical results.

011603-3 Svetovoy et al. Appl. Phys. Lett. 111, 011603 (2017)

ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-111-025728
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-111-025728
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-111-025728


energy of the unperturbed beam Wel ¼ 6=K3. The maximal

relative correction to this expression is �n0 � 1 (see the sup-

plementary material). Actually one could expect that the elas-

tic energy cannot change significantly due to the dispersion

pressure. This is because this pressure induces a relatively

small effect in the beam shape and the unperturbed beam

dominates in the elastic energy.

The work done by the dispersion force is estimated from

(10) as WF � �Kn0=R (supplementary material). It is of the

same order as the correction to Wel, which we neglected.

Thus, we expect that the main contribution to the total

energy of the deformed beam is W ¼ 6=K3 with the relative

correction �n0, which scales as R�1=2.

The discussion above shows that for qualitative analysis

W ¼ 6=K3 is a good approximation for the dimensionless

energy. Expressing the adhesion energy as C ¼ �w�1dU=ds
one finds that in this approximation C does not depend on

the dispersion pressure

C ¼ �hPC
dW

dK
� 3Et3h2

2s4
: (11)

This is the same expression used in earlier studies.17,18

The parameter K can be expressed via the pressure PC

and the adhesion energy C. Using Eqs. (4) and (11) we find

K4 ¼ 18RðPCd0=CÞ: (12)

In the general case, the pressure and the adhesion energy are

independent parameters. Of course, adhesion includes the

dispersion pressure as one of the components but not the

only one. Additionally chemical interaction in the place of

actual contact or locally formed water menisci can contribute

to the adhesion energy. The adhesion energy is minimal if

only vdW/Casimir forces are involved. These forces are

omnipresent and cannot be excluded. The minimal C is

defined as the free energy of the vdW/Casimir interaction

between the beam and the substrate separated by the average

distance d0. The free energy can be expressed by the Lifshitz

formula1 via the dielectric properties of the bodies. Note that

the roughness of the bodies can only increase the value of C
and for small d0 this effect can be significant.6,26,27

If only the dispersion pressure contributes to the adhe-

sion energy, C and PC have the same physical origin and,

therefore, are related to each other as energy and force: C
¼PCd0=ða�1Þ. Using Eq. (12) we find K¼ð18ða �1ÞRÞ1=4

.

It can be compared with Kc as presented in Fig. 3(a). For

example, for a¼3 we find K¼2:45R1=4 while the critical

value is just a little bit larger Kc¼2:46R1=4. It means that if

the adhesion energy is defined only by the vdW/Casimir

forces, the adhered beam will be very close to the critical

situation.

Nonlocal response of an adhered cantilever on the dis-

persion pressure is a convenient property that can be used to

probe the dispersion forces at small distances by measuring

the effect far from the place where the force is applied.

Simultaneously the pressure and the adhesion energy can be

determined; the system does not suffer from the jump-to-

contact problem; surface charges or contact potential do

not play significant role at distances d0 � 10 nm. One can

propose a few protocols to measure the dispersion pressure

using the adhered cantilever but here we shortly describe

only one of them.

The force can be measured with a laser vibrometer,

which is sensitive to the rate of change of the optical path.

The shape of the cantilever and the unadhered length s can

be determined with a high precision by scanning with the

laser beam along the cantilever. To make estimates we are

using simple expressions for the shape (5) and (6). The vibr-

ometer signal (velocity) as a function of time s is given by

S0 ¼ �6
vsh

s
n 1� nð Þ; n ¼ vss

s
;

DS � vs

ffiffiffiffiffiffiffi
d0h
pffiffiffi

3
p

s

PCd0

C

� �
3n2 � 4nþ 1
� �

;

(13)

where vs is the scan speed, S0 is the signal from the unper-

turbed beam, DS is the change of the signal due to the disper-

sion force, and the total signal is S ¼ S0 þ DS. It is assumed

that in Eq. (13) n > n0. The contrast is estimated as

DS

S0

� � PCd0

C
ffiffiffiffiffiffi
3R
p

� �
3n2 � 4nþ 1

6n 1� nð Þ : (14)

This ratio is zero at n ¼ 1=3, where f� f0 is maximal, but it

strongly increases for n! n0 where it is as large as PCd0=6C.

Significant increase of the contrast happens because the unper-

turbed shape increases quadratically while the perturbed shape

increases linearly with n for n > n0. The absolute value of the

signal is controlled by the scan speed and is well measurable at

vs > 1 m/s. Since the largest contrast does not depend on the

cantilever parameters, they can be chosen in a wide range. The

cantilevers can be microfabricated with a thickness of 2 lm

and a length of 1 mm as in Ref. 18 or made of thin (50 lm) sil-

icon wafers with a length of 50 mm or so.

In conclusion, we considered the influence of the vdW/

Casimir forces on an adhered cantilever. Although the forces

are operative only very close to the point of contact, they

influence the shape of the cantilever far from the contact at

about one third of the unadhered length. The cantilever can

be used to measure simultaneously the dispersion forces and

the adhesion energy at short separations, where the usual

methods suffer from the jump-to-contact instability.

See supplementary material for the exact solution of the

stepwise force model and for energy calculation.
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